QuantumLib.Proportional
Relation for equality up to a global phase.
Definition proportional {m n : nat} (A B : Matrix m n) :=
∃ θ, A = Cexp θ .* B.
Infix "∝" := proportional (at level 70).
Lemma proportional_refl : ∀ {m n} (A : Matrix m n), A ∝ A.
Lemma proportional_symm : ∀ {m n} (A B : Matrix m n), A ∝ B → B ∝ A.
Lemma proportional_trans : ∀ {m n} (A B C : Matrix m n),
A ∝ B → B ∝ C → A ∝ C.
Lemma Mmult_proportional_compat : ∀ {m n o} (A A' : Matrix m n) (B B' : Matrix n o),
A ∝ A' → B ∝ B' → A × B ∝ A' × B'.
Add Parametric Relation (m n : nat) : (Matrix m n) (@proportional m n)
reflexivity proved by proportional_refl
symmetry proved by proportional_symm
transitivity proved by proportional_trans
as uc_equiv_rel.
Add Parametric Morphism (m n o : nat) : (@Mmult m n o)
with signature (@proportional m n) ==> (@proportional n o) ==>
(@proportional m o) as Mmult_mor.